За что отвечает гироскоп. Что такое гироскоп в смартфоне и как он работает. Использование с другими модулями

29.12.2023
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Самый простой акселерометр представляет собой некий груз, который перемещается в корпусе на пружинке и реагирует на силу инерции, возникающей при повороте или встряхивании смартфона. При ускорении грузик двигается, так или иначе напрягая пружину. Причём, эти колебания можно представить в виде данных. Три таких устройства, стоящих перпендикулярно друг другу, дают понять, как расположен предмет, к которому они прикреплены относительно земли.

Принцип действия акселерометра в смартфоне тот же, но груз заменён инертной массой, которая находится внутри маленького чипа. Движения этой инертной массы и помогают определить перемещение смартфона в пространстве.

Принцип работы гироскопа

Гироскоп - это волчок, помещённый в раму из трёх колец и вращающийся с очень большой скоростью. Как бы мы не поворачивали волчок, он всё равно будет находиться в вертикальном положении, тогда как кольца будут двигаться.

Чтобы устройство могло определять своё положение в пространстве, используют трёхмерный акселерометр, как в
Nintendo Wii Remote . В современных устройствах, в частности на игровых контроллерах, используют и гироскоп, и акселерометр для более точного определения положения джойстика.

Или технологией Bluetooth был чем-то необычным. Теперь же все эти функции стали привычными, а некоторые из них даже успели устареть. Производители добавляют в свои модели новые возможности, одна из которых - гироскоп в телефоне. Что же он из себя представляет, как применяется?

Гироскоп и акселерометр

Многие люди часто путают эти два понятия. Давайте разберёмся.

Акселерометр, или G-сенсор - устройство, которое отслеживает изменение положения девайса относительно своей оси - например, повороты влево-вправо, на себя и от себя.

Гироскоп в телефоне позволяет регистрировать не только эти действия, но и любые перемещения устройства в пространстве, а также фиксировать скорость перемещения. Поэтому можно считать его улучшенным акселерометром.

Принцип действия гироскопа

Устройство представляет собой диск, который закреплён на двух подвижных рамках. Он быстро вращается. При изменении положения этих рамок, диск не сдвигается с места. Если постоянно поддерживать вращение, например, с помощью электромотора, то можно с точностью определить положение объекта, на котором установлен гироскоп. Это может быть использовано и для определения сторон света.

Варианты применения

Ещё в девятнадцатом веке гироскоп использовался военно-морскими силами и гражданскими судами, так как с помощью него можно было наиболее точно определить стороны света. Ещё он нашёл своё применение в авиации и ракетной технике.

Гироскоп iPhone 4

В Айфоне конструкция прибора немного отличается от классической, поскольку она выполнена на основе микроэлектромеханического датчика. Принцип же действия остаётся прежним.

Гироскоп в телефоне имеет очень большую сферу применения. Безусловно, в первую очередь это разнообразные игры, использующие данную технологию. Наиболее популярные среди них - гоночные симуляторы и шутеры. Для примера: в шутерах используется так называемая «дополненная реальность» - выстрелы производятся с помощью нажатия, а для того, чтобы прицелиться, нужно изменить положение смартфона - камера в игре передвинется точно так же.

Кроме игровой индустрии, гироскоп применяется в разнообразном программном обеспечении. С его помощью доступ к различным функциям становится гораздо удобнее. Например, в некоторых операционных системах при встряхивании устройства происходит обновление Bluetooth. Ещё эта технология применяется в ряде специфических приложений, служащих для измерения угла наклона (уровня).

Мобильная индустрия в последнее время развивается всё быстрее и быстрее. Ещё недавно гироскоп в телефоне был модной новинкой, а теперь он используется повсеместно и считается привычной деталью любого смартфона. Возможно, всего через несколько лет появится новое поколение устройств, позволяющих проецировать изображение на любую точку пространства, ведь наука идёт вперёд семимильными шагами. Пока же мы можем только строить предположения по этому поводу и искать способы применения тем технологиям, которые уже изобретены.

Гироскопы в телефонах применяются на протяжении последних пяти лет. Сегодня без них не обходится ни одно устройство. Но до сих пор многие не знают, что это такое.

Если при создании телефона первоначальная задумка заключалась в возможности вести общение на расстоянии, ввиду развития современных технологий это полноценное многофункциональное устройство.

Поскольку на мировом рынке всегда удерживается большая конкуренция между брендами, компании стремятся показать своей целевой аудитории новые решения, выгодно отличающиеся от остальных производителей. Именно конкуренция стала причиной появления в смартфонах гироскопа.

Именно благодаря ему устройства стали более функциональными, завоевали хорошие отзывы от владельцев. Если совсем недавно гироскопы считались диковинным элементом девайса, сегодня целевую аудиторию сложно удивить их наличием. И несмотря на то, что некоторые считают гироскоп полезным элементом системы телефона, остальные предпочитают отключать его.

Что это такое?

Гироскопом является специальный чип (в смартфоне), который анализирует положение объекта в пространстве и определяет углы его размещения. Самым простым примером стандартного гироскопа является юла – игра, разработанная специально для детей. Впервые гироскоп был представлен общественности немецким астрономом и математиком И. Боненбергером.

В некоторых научных трудах также присутствует информация о том, что на самом деле устройство изобрели на три года раньше. Гиродатчики активно применяются в большом количестве сфер наук и техники, включая авиацию, судоходство, космонавтику. Их устанавливают в бытовой технике, и, естественно, современных смартфонах.

Гироскоп и акселерометр – принципиально разные вещи

В обществе почему-то сформировалась мысль о том, что акселерометр и гироскоп являются идентичными устройствами, которые, соответственно, предназначены для выполнения аналогичных функций. На самом деле, это далеко не так. монтируется в смартфон для того, чтобы отслеживать его поворот в пространстве. Гиродатчики отвечают за куда больший перечень задач:

  • перемещение устройства в пространстве;
  • определение стороны света;
  • скорость перемещения в пространстве;
  • другие функции.

В общей сложности, функционал очень сильно похож, поэтому гиродатчик сам по себе является значительно модернизированным акселерометром, выпускаемым в виде отдельного устройства. Если акселерометр регистрирует поворот дисплея, гироскопы дают возможность определить передвижение в трех плоскостях. Некоторые приложения активно используют интегрированный микрочип для решения внутренних задач.

Основные функции гироскопа в современных смартфонах

Благодаря использованию гиродатчиков в смартфонах производители позволили воспользоваться рядом новых возможностей. Вне зависимости от того, в каком именно аппарате установлен микрочип, владелец непременно отметит функционал.

Например, раньше для того, чтобы ответить на важный звонок, необходимо было нажимать на кнопку или коснуться экрана. Теперь, всего лишь встряхнув телефон, вы можете начать разговор. Кроме того, гироскоп дает возможность смотреть фотографии, интересные изображения, перевернуть страницу в электронной книге. В аудиоплеерах перед вами появляется возможность выбрать другую песню, не касаясь при этом никаких кнопок.

Гиродатчики невероятно удобны в калькуляторах. При портретном использовании появляется возможность справиться с минимальным количеством функций – умножить, поделить, вычесть или сложить.

Если владелец перевернет телефон на 90 градусов, получит ряд дополнительных возможностей. По сути, перед ним появится настоящий инженерный калькулятор. И что самое главное – не нужно каждый раз тратить время на поиск и выбор нужной функции в меню настроек – система самостоятельно определяет, когда необходимо переключиться на инженерную версию, а когда – вернуться обратно на обычную.

Может показаться, что гироскоп отвечает только за выполнение обычных функций. На самом деле, это далеко не так. Разработчики программного обеспечения также обратили внимание на возможности гиродатчиков.

Некоторые операционные системы предусматривают возможность повторного поиска устройств, . Микрочипы дают пользователю возможность пользоваться специфическими программами, посредством которых определяется уровень и угол наклона объекта. Поэтому если вы увидите строителя, который измеряет угол размещения тех или иных предметов дома с помощью айфона, не стоит удивляться.

Гироскопы очень удобны, если владельцу смартфона необходимо определить местность, в которой находится человек. Вам может показаться, что за такую функцию отвечает только GPS-датчик, но на самом деле, это не так.

Сейчас самостоятельно подсчитывает текущие координаты местонахождения, а гироскоп определяет направление, в которую повернут человек в режиме реального времени. К примеру, если вы находитесь на открытой местности, где нет дорог, но вам надо добраться до ближайшего населенного пункта, достаточно повернуться лицом к нему – и на экране вы сможете увидеть, куда сможете прийти, если постоянно шагать прямо. Наоборот, отвернувшись спиной к требуемому населенному пункту, вы заметите и это.

Наличие подобных помощников делает ориентирование на незнакомой местности куда более простым. Таким образом, гиродатчик является незаменимым элементом смартфона, используемого людьми, которым нравятся активные виды отдыха.

Естественно, дело не обходится без минусов. Некоторые владельцы телефонов, где присутствует гироскоп, предпочитают отключать его. Так, например, некоторые приложения могут медленно реагировать на изменения в текущем положении в пространстве. Кроме того, если вы лежа читаете книгу, перевернувшись на бок, гиродатчик сразу же укажет программе на необходимость изменения ориентации страницы. Как результат, вы можете столкнуться с рядом неудобств.

Как и кто использует гироскоп чаще всего?

Практика показывает, что наиболее часто гироскоп задействуют геймеры. Присутствие такого микрочипа в смартфоне существенно меняет принцип игры. Картинка получается более качественной. Так, к примеру, раньше необходимо было нажимать на кнопку экране, чтобы указать направление поворота транспортного средства.

Сейчас же достаточно повернуть смартфон в сторону, чтобы машина поехала в указанную сторону . Причем интенсивность поворота зависит от угла расположения телефона. Для крутого вхождения в поворот придется перевернуть устройство на 60-70 градусов.

В шутерах же применение гиродатчиков способствует быстрому наведению на вражескую цель. Не обошли стороной задействование гироскопа и разработчики симуляторов.

Второй категорией пользователей по популярности являются представители сложных профессий, в которых требуется предельная точность. Так, например, некоторые автослесари могут определять правильность установки деталей, всего лишь приложив телефон к ним. Строители проверяют ровность несущих конструкций – информация о градусе расположения выводится прямо на экран.

Выводы

Гироскоп – это сложное устройство, без которого не обходится ни один современный смартфон. Его изобретение и внедрение в мобильные аппараты позволило значительно расширить функциональные возможности. Телефон, где есть собственный гиродатчик, можно использовать не только для совершения звонков, но и определения углов объектов, текущего направления объекта в пространстве и так далее. Даже для принятия входящего вызова достаточно легко встряхнуть свой телефон и начать диалог, не нажимая никаких кнопок, не касаясь экрана.

Производители постоянно совершенствуют конструкцию гироскопов. Поэтому современные модели не требуют так много энергии, как раньше. Даже если вы не пользуетесь гироскопом , не выключайте его, но при условии, что он не мешает.

В противном случае (например, при чтении электронной книги лежа на диване) его все-таки придется деактивировать. Без гироскопа мы не могли бы полноценно ориентироваться в условиях пребывания на незнакомой территории. Гиродатчик по праву можно считать одним из самых важных элементов современных телефонов и планшетов, увеличивающим количество полезных функций.

Прежде чем приступить к рассмотрению модуля гироскопа и акселерометра, думаю, будет не лишним коротко разобраться что это такое. Гироскоп представляет собой устройство, реагирующее на изменение углов ориентации контролируемого тела. В классическом представлении это какой-то инерционный предмет, который быстро вращается на подвесах. Как результат вращающийся предмет всегда будет сохранять свое направление, а по положению подвесов можно определить угол отклонения. На самом же деле электронные гироскопы построены по другой схеме и устроены немного сложнее (вращающийся волчок впихнуть в микросхему было бы не просто). Акселерометр - это устройство, которое измеряет проекцию кажущегося ускорения, то есть разницы между истинным ускорением объекта и гравитационным ускорением. На простом примере такая система представляет собой некоторую массу, закрепленную на подвесе, обладающим упругостью (пружина для хорошего примера). Так вот если такую систему повернуть под каким-то углом, или бросить, или предать линейное ускорение, то упругий подвес отреагирует на движение под действием массы и отклонится и вот по этому отклонению определяется ускорение. Таким образом, гироскоп реагирует на изменение в пространстве независимо от направление движения, с помощью акселерометра же может измерять линейные ускорения предмета, а так же и искусственно рассчитываемое расположение предмета в пространстве. Каждое устройство имеет свои достоинства и недостатки.

Микросхема MPU6050 содержит на борту как акселерометр, так и гироскоп, а помимо этого еще и температурный сенсор. MPU6050 является главным элементом модуля GY-531. Помимо этой микросхемы на плате модуля расположена необходимая обвязка MPU6050, в том числе подтягивающие резисторы интерфейса I 2 C, а также стабилизатор напряжения на 3,3 вольта с малым падением напряжения (при питании уже в 3,3 вольта на выходе стабилизатора будет 3 ровно вольта) с фильтрующими конденсаторами. Ну и бонусом на плате распаян SMD светодиод с ограничивающим резистором как индикатор питающего напряжения. Размер платы модуля GY-521 10 х 20 мм.

Схема модуля представлена ниже (номиналы могут немного отличаться в разных версиях модуля):

Характеристики MPU6050 :

  • напряжения питания 2,375 - 3,46 вольт
  • потребляемый ток до 4 мА
  • интерфейс передачи данных - I2C
  • максимальная скорость I2C - 400 кГц
  • вход для других датчиков I2C
  • внутренний генератор на 8 МГц (вне модуля возможность подключить внешний кварцевый резонатор на 32,768 кГц или 19,2 МГц)

Нужно отметить возможность MPU6050 работать в мастер режиме I2C для AUX выводов, к которым можно подключить еще один внешний датчик (например магнитометр). Честно говоря, я не понимаю для чего это вообще нужно, если проще подключать дополнительные датчики к общей шине I2C микроконтроллера.

Функции MPU6050 :

  • трех осевой MEMS гироскоп с 16 битным АЦП
  • трех осевой MEMS акселерометр с 16 битным АЦП
  • Digital Motion Processor (DMP)
  • slave I 2 C для подключения к микроконтроллеру
  • master I 2 C для подключения к микросхеме дополнительного датчика
  • регистры данных датчиков
  • прерывания
  • температурный сенсор
  • самопроверка гироскопа и акселерометра
  • регистр идентификации устройства

Внешний вид модуля GY-521:

В комплекте идут штыревые соединения угловые и прямые. Припаян был прямой штыревой разъем.

Данные измерений датчиков можно считывать как из регистров хранения, так и пользоваться функциями FIFO. Имеется отдельный регистр под названием Who am I, значение, записанное в этом регистре постоянно и его можно только считать, можно использовать как идентификатор устройства, значение в регистре 104 или 0х68. Отдельным выводом является выход прерываний, который настраивается регистрами настройки под определенные события.

Датчики гироскопа и акселерометра изготовлены как MEMS (микроэлектромеханическая система) - внешнее воздействие на датчик сначала изменяет состояние механической части, затем изменение состояния механической части приводит к изменению сигнала электрической части. Одним словом в одном корпусе собрана не только электроника, но и механика. В микросхеме MPU6050 содержится сразу два MEMS датчика, производитель утверждает, что их взаимное воздействие друг на друга сведено к минимуму. Ну что же, совсем не плохо за цену готового модуля порядка 2 уе. Между прочим эти модули можно приобрести на торговых площадках aliexpress или ebay.

Разберемся как можно использовать датчики акселерометра и гироскопа. Температурный датчик трогать даже не будем - данные о температуре прочитали, перевели в человеческие значения и наслаждаемся. Гироскоп выдает значения мгновенной угловой скорости с разрешением, заданным в настройках, например 2000 градусов в секунду. Если прошить микроконтроллер и смотреть на получаемые данные, то увидим только нули. Если начать крутить датчик, то получим мгновенные значения угловой скорости. Заметьте, что скорость мы получаем в градусах в секунду, а это значит, что линейные скорости не влияют на эти показания - показания будут изменяться только при повороте датчика в пространстве. Далее с помощью этих данных можно получить ориентацию объекта в пространстве. Для этого нужно получить мгновенное значение угловой скорости и умножить его на промежуток времени между опросами датчика гироскопа. Пример разрешение 2000 градусов в секунду, промежуток между опросами датчика 0,1 секунда, значение мгновенной скорости 300, значит 300*0,1=30 - за это время ось гироскопа была повернута на 30 градусов. Далее каждое полученное значение нужно сложить с предыдущим. Если ось двигалась в одном направлении - значение 30 градусов, если в другом, то -30, таким образом, при возвращении датчика в исходное положение всегда (в идеале) будет 0, при отклонении от исходного положения, при выполнении вышеописанных действий, получим угол отклонения. Обрабатывая углы трех осей гироскопа можно получить ориентацию объекта в пространстве.

Таким образом, при интегрировании состояния угла положения, также интегрируется и погрешность - при длительном использовании можно получить уже абсолютно неправильные значения. Поэтому часто гироскоп используют в паре с акселерометром, образуя в простом варианте альфа-бета фильтр или комплементарный фильтр.

С акселерометром все проще. Измеряя ускорения трех осей датчика можно получить данные, преобразуя их с помощью геометрии, по которым можно также получить ориентацию объекта в пространстве. Помимо этого акселерометр измеряет линейные ускорения, то есть ориентация объекта может искажаться при движении датчика в линейных направлениях. Также с помощью акселерометра можно определять движение объекта или его столкновение. Например детектировать падение объекта или толчок о преграду, чтобы обходить это.

Данные от акселерометра получаем всегда достаточно точные, то есть нуль всегда остается нулем ни при каких воздействиях (имеется ввиду не зависит ни от времени, ни от характера воздействия), однако недостаток кроется в том, что данные идут шумом в некотором диапазоне данных, то есть до десятых долей градуса точно измерять угол не получится. Зато исходя из экспериментальных данных, точность до целых значений градуса держится вполне стабильно. Не забываем про влияние линейных ускорений.

Если датчик приобрели, можно переходить к рассмотрению внутренностей модуля, а именно главного элемента - микросхемы MPU6050. Информация хранится в регистрах микросхемы, которых более 100 (!). И вот тут то и кроется огромный подводный камень. производитель не утрудился расписать в документации всю информацию, а привел лишь информацию о самом необходимом. На самом деле не известно даже сколько же всего там регистров, доступных для чтения или записи или того и другого. Также информации на некоторые регистры попросту нет, кроме его названия. Ну что же, придется экспериментально определять влияния значений, записанных в некоторые регистры.

В конце статьи вы можете скачать исходный код примера использования данного модуля. Внутри вы найдете информацию о том как считывать данные датчиков модуля, а также инициализацию устройства или просто первоначальную настройку регистров для начала работы с модулем GY-521.

Интерфейс I 2 C работает по стандартной схеме. Адрес микросхемы может быть двух значений (без бита чтения / записи) в зависимости от состояния вывода AD0 - b1101000, если AD0 соединен с землей и b1101001, если AD0 соединен с источником питания. Соответственно плюс бит чтения или записи.

Микросхема содержит Digital Motion Processor (DMP), он необходим для того, чтобы обрабатывать данные, получаемые из датчиков гироскопа и акселерометра. Все это делается для того, чтобы повысить точность получаемых данных, так как при обработке данных на микроконтроллере точность может пострадать из-за снижения скорости их обработки. Как правило, алгоритмы обработки движения должны работать с достаточно высокой частотой, обычно 200 Гц, как утверждает документация.

Что касается регистров, то их достаточно большое количество, необходимая информация находится в карте регистров на MPU6050, документ прилагается к статье. Помимо этого прилагается исходник с настройками этих регистров.

Для демонстрации работы модуля была собрана схема:

Здесь использован микроконтроллер Atmega8, данные выводятся на ЖК дисплей 2004А (4 строки по 20 символов). На экран выводится следующая информация, полученная и преобразованная от микросхемы MPU6050 модуля: 1. значения по трем осям акселерометра, 2. значения по трем осям гироскопа, 3. температура, 4. углы отклонения по данным акселерометра (рассчитаны ресурсами микроконтроллера), 5. поворот по оси Z по данным гироскопа (также путем подсчета микроконтроллером). В первом и втором пункте данные имеют мгновенный характер - то есть именно то, что считывается из регистров хранения, это значит, что для гироскопа это скорость, в состоянии покоя все значения будут равны нулю.

Помимо этого, имеется 6 светодиодов, которые загораются в зависимости от положения датчика по оси Y акселерометра.

Модуль датчиков содержит уже стабилизатор на 3,3 вольта, поэтому его можно подключать как к 5 вольта, так и к 3,3 вольтам. Микроконтроллер запитывается от напряжения 3,3 вольта, чтобы не делать согласование уровней I 2 C.

Собранное устройство на макетной плате:

Для программирования микроконтроллера конфигурация фьюз битов (Atmega8):

Область применения таких датчиков достаточно широка. Данный модуль часто применяют для стабилизации полета квадрокоптера по причине совместного использования гироскопа и акселерометра. Кроме этого модуль можно использовать для координации различных устройств - от просто детектора движения до системы ориентации различных роботов или управления движениями каким-либо устройствами. Область подобных сенсорных устройств достаточно новая и интересная для изучения и применения в любительской технике.

В заключении хотелось бы отметить, что данные модуль - это недорогое и достаточно хорошее решение при необходимости использования гироскопа и / или акселерометра, большое количество настроек датчиков позволит настроить их под любые устройства, малые размеры модуля без труда позволят встраивать его в большинство схем.

К статье прилагается прошивка микроконтроллера, исходный код , документация на MPU6050 и видео работы датчика в схеме.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
MOD1 Модуль GU-521 1 На базе MPU6050 В блокнот
IC1 МК AVR 8-бит

ATmega8

1 В блокнот
VR1 Линейный регулятор

L7805AB

1 В блокнот
VR2 Линейный регулятор

AMS1117-3.3

1 В блокнот
HG1 LCD-дисплей 2004A 1 В блокнот
C1 470 мкФ 1 В блокнот
C2, C3, C5 Конденсатор 100 нФ 3 В блокнот
C4 Электролитический конденсатор 220 мкФ 1 В блокнот
C6 Электролитический конденсатор 10 мкФ 1

Гироскоп - один из многих современных датчиков, без которых сложно представить работу смартфона.

Область применения этого датчика в телефоне достаточно обширна. Полноценный гироскоп визуально напоминает юлу внутри нескольких обручей. Ввиду габаритов такая конструкция не может быть установлена в гаджете, поэтому ее заменили на датчик, основанный на микроэлектромеханической системе.

Что такое гироскоп?

Гироскоп в современном телефоне - датчик, который позволяет автоматически менять ориентацию экрана в зависимости от положения смартфона.

Впервые гироскоп был установлен в iPhone 4, благодаря чему устройство обрело новый полезный функционал. С датчиком пользователи получили возможность, например, перелистывать страницы и переключать треки в плеере встряхиванием смартфона.

Для включения датчика на устройствах с операционной системой Android 4.0 KitKat и выше достаточно выкатить шторку уведомлений и активировать опцию автоповорота экрана.

Акселерометр и гироскоп

Как правило, современные телефоны оснащены этими датчиками в паре. Принцип их работы хоть и похож, но не дублируется. измеряет ускорение объекта при перемещении, в то время как гироскоп измеряет угол отклонения аппарата относительно разных плоскостей.

Функции гироскопа в смартфонах

Гироскоп вывел игровой процесс на новый уровень. Вращая устройство в пространстве, пользователь может управлять автомобилем, вести игровой поединок, искать персонажей и многое другое.

Если говорить о стандартных приложениях, наиболее показательными преимущества гироскопа выглядят, например, в приложении калькулятор. В портретной ориентации пользователю доступны стандартные действия: сложение, вычитание, умножение и деление. Повернув телефон на 90 градусов, можно получить большой выбор тригонометрических функций на все случаи жизни.

Разумеется, с автоматической работы датчика гораздо удобнее смотреть видео в YouTube и листать фотографии. Еще датчик можно использовать, чтобы сделать из телефона строительный уровень - д ля этого нужно скачать специальное приложение.

По сути, недостатков у гироскопа нет. Конечно, иногда появляется дискомфорт при просмотре картинок или чтении, когдапри изменении позы человека и устройства возможны нежеланные изменения ориентации экрана. Решение простое - отключить автоповорот в настройках.

Последние материалы сайта